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Abstract
This paper provides explicit techniques to compute the exponentials of a variety
of structured 4 × 4 matrices. The procedures are fully algorithmic and can be
used to find the desired exponentials in closed form. With one exception, they
require no spectral information about the matrix being exponentiated. They
rely on a mixture of Lie theory and one particular Clifford algebra isomorphism.
These can be extended, in some cases, to higher dimensions when combined
with techniques such as Givens rotations.

PACS numbers: 03.65.Fd, 02.10.Yn, 02.10.Hh

1. Introduction

Finding matrix exponentials is arguably one of the most important goals of mathematical
physics. In full generality, this is a thankless task [1]. However, for matrices with structure,
finding exponentials ought to be more tractable. In this paper, confirmation of this phenomenon
is given for a large class of 4 × 4 matrices with structure. These include skew-Hamiltonian,
perskewsymmetric, bisymmetric (i.e., simultaneously symmetric and persymmetric,
e.g., symmetric, Toeplitz), symmetric and Hamiltonian etc. Some of the techniques presented
extend almost verbatim to some families of complex matrices (see remark 3.4, for instance).

There are at least three important sources which motivate the problem of exponentiating
a matrix in applications. First, the problem of solving a linear system of differential equations
clearly requires matrix exponentiation. Such linear systems may represent the actual dynamics
of the system or may be obtained from Jacobian linearization of a nonlinear system. They
could also arise as part of specific ansätze to solve other systems. Second, many applications
call for explicit parametrizations of classes of matrices. One such parametrization is afforded
by the exponentials of related classes of structured matrices. A third source is the study of
numerical structure preserving algorithms for nonlinear differential equations which evolve
on Lie groups [2]. Many such algorithms have, as an essential ingredient, the computation
of certain matrix exponentials. Hence, explicit formulae for matrix exponentials are of vital
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utility to all such problems. Bearing in mind these motivations, a brief list of applications
featuring the structured matrices, being studied in this work, is provided next. Orthogonal
(and, hence skew-symmetric) matrices are ubiquitous in many applications. Novel examples
include robotics, computer vision, various types of lattice filters such as thin film dielectric
coatings and Fabry-Perot etalon structures [3–5]. Hamiltonian matrices are central to classical
and quantum mechanics, of course. In particular, the metaplectic representations of their
exponentials intervene in an essential way in quantum optics [6]. Symmetric, persymmetric
matrices arise in vibrational analysis, the study of neural networks [7, 8]. Toeplitz matrices
arise in signal processing and a variety of inverse problems. Finally, many of these matrices
(or rather faithful representations of them) play a role in the study of (quasi) exactly solvable
models in quantum mechanics. In particular, the exponentials of such matrices intervene in
various disentangling formulae. This list is, of course, minuscule and does not even touch
upon novel fields of applications such as biology.

In light of the above, it is interesting that the exponentials of these structured matrices
can be calculated algorithmically in dimension four (these lead to closed form formulae), for
the most part, without any auxiliary information about their spectrum. For general symmetric
matrices, however, the spectral decomposition of a 3 × 3 matrix is needed (see, however,
(iii) of remark 2.1). On the other hand, this spectral decomposition can itself be produced in
closed form. Thus, even for such matrices the techniques described here can be justifiably
called closed form methods. For brevity, this paper only records explicit algorithms for finding
these matrix exponentials—the resultant final formulae can easily be written once the reported
procedures are implemented.

The methods discussed below are of two types. The first, which is more versatile, relies on
an algebra isomorphism of real 4×4 matrices with H ⊗H , where H is the field of quaternions.
This algebra isomorphism, known from the theory of Clifford algebras and which ought to
be widely advertized, was used in a series of interesting articles by Mackey et al [9–11] for
finding eigenvalues of some of the structured matrices discussed here. The present paper can
be seen as a contribution of a similar type. It is emphasized that for the preponderance of
the matrices, considered here, this algebra isomorphism alone is needed. In particular, in this
paper no use is made of any of the structure preserving rotations used in [9–11] ever—see (ii)
of remark 3.2. The second is based on the observation that several ‘covering’ space Lie group
homomorphisms, when made explicit, contain in them a recipe for finding exponentials of
matrices belonging to certain Lie algebras. This circumstance renders the exponentiating of
some 4 × 4 matrices (real/complex) equivalent to the job of finding the exponential of 2 × 2
matrices—which can be done in closed form. This method is, however, applicable only to a
limited family of matrices. Therefore, this method is presented in an appendix.

It is worth noting that, though most of the structured matrices considered here were chosen
for their importance in applications, the real enabling structure is that present in H ⊗ H . This
is especially illustrated by certain normal matrices (see definition 3.1).

The balance of this paper is organized as follows. In the next section some notation
and one observation which is used throughout are recorded. In the same section the relation
between H ⊗ H and gl(4, R) is presented. The third section discusses a wide family of
matrices which can be exponentiated using the aforementioned algebra isomorphism, and
contains an illustrative example. The final section offers conclusions. In the first appendix,
the second approach to exponentiating matrices in p(4, R) and so(2, 2, R) (see the next
section for notation) is presented in a manner that makes the connection to the covering space
homomorphism between SU(2) × SU(2) and SO(4, R) explicit (see remark 5.1). In the final
section, 13 classes of matrices are listed which can be exponentiated by mimicking verbatim
two situations studied earlier.
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In closing this introductory section it is noted that by combining these techniques with
techniques such as structure preserving similarities, e.g., Givens rotations [12], one can extend
these results, in many cases, to find algorithmically the exponentials of structured matrices
of size bigger than 4. In other words, one can use such similarities (normally used in the
literature for reduction to canonical forms) to reduce the exponential calculation to dimension
four or lower of matrices with similar structure. In principle, this would provide closed
form formulae for the exponentials of such structured matrices, since one can explicitly write
the desired Givens type similarities. However, it is more accurate to say that this implies
an algorithmic procedure for exponentiating such matrices. For matrices for which this is
possible (e.g., symmetric matrices), the details of this procedure are routine and hence will
not be pursued here.

2. Notation and preliminary observations

The following definitions and notations will be frequently met in this work:

• gl(n, R) and gl(n, C) represent the algebra of real (respectively complex) n×n matrices.
These are, of course, the Lie algebras of the Lie groups of real (complex) invertible
matrices.

• sl(n, R) and sl(n, C) represent the algebra of real (respectively complex) traceless
matrices. SL(n,R) and SL(n,C) represent the corresponding Lie groups of real
(respectively complex) matrices of determinant 1.

• SU(n) represents the Lie group of n × n unitary matrices of determinant 1. su(n)

represents the corresponding Lie algebra of n × n skew-Hermitian, traceless matrices.
Note it is customary to use the terminology ‘anti-Hermitian’ for skew-Hermitian matrices.

• Rn represents the matrix with 1 on the anti-diagonal and zeroes elsewhere. p(n,R) and
p(n,C) represent the algebra of n×n real (respectively complex) matrices, A, satisfying
AT Rn + RnA = 0. These matrices are also said to be perskewsymmetric. Persymmetric
matrices are those matrices, X, which satisfy XT Rn = RnX. Such matrices are symmetric
about the anti-diagonal. P(n,R) (respectively P(n,C)) is the corresponding Lie group,
namely, the set of matrices (real/complex), X, which satisfy XT RnX = Rn.

• J2n is the 2n × 2n matrix which, in block form, is given by J2n = (
0n In

−In 0n

)
. sp(2n,R) and

sp(2n,C) represent the Lie algebra of those real (respectively complex) 2n×2n matrices
which satisfy XT J2n + J2nX = 0. Such matrices are also called Hamiltonian. Matrices,
Z, satisfying ZT J2n = J2nZ are called skew-Hamiltonian (sometimes anti-Hamiltonian).

• Ip,q = (
Ip 0

0 −Iq

)
. so(p, q, R) and so(p, q, C) represent the Lie algebra of real (respectively

complex) n × n matrices (n = p + q), X, satisfying XT Ip,q + Ip,qX = 0.
• The anti-trace of an n×n matrix is the sum of the elements on its anti-diagonal. X, n×n,

is anti-scalar if X = γRn, with γ ∈ R (or C).
• Throughout H will be denote the field (more precisely the division algebra) of the

quaternions, while P stands for the purely imaginary quaternions, tacitly identified
with R3.

Remark 2.1.

(i) Throughout this paper, use of the following observation will be made: let X be an n × n

matrix satisfying X2 + c2In = 0, c �= 0. Then eX = cos(c)In + sin(c)

c
X. Here c2 is allowed

to be complex, and c is then taken to be
√

r ei θ
2 , with c2 = r eiθ , θ ∈ [0, 2π). Note, in

particular, that if c2 is purely imaginary (equivalently, if X2 = d2In, with d real), then
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the cos and sin in the formula for eX become their hyperbolic equivalents, cosh and sinh
respectively.

(ii) Occasionally the fact that any matrix which satisfies X3 = −c2X, c �= 0, satisfies
eX = I + sin(c)

c
X + 1−cos(c)

c
X2 (Rodrigues’s formula) will also be used. Once again c2 is

permitted to be complex.
(iii) Explicit formulae for eA can be produced if the minimal polynomial of A is known

and it is low in degree (cf [13] where such formulae are written from the characteristic
polynomial). Since it is possible to find the minimal polynomial of many of the matrices
considered here explicitly (i.e., without any spectral information), this removes the need
for the spectral decomposition, mentioned in the introduction, for A symmetric. However,
since the corresponding explicit formulae for eA are more complicated than those in (i)
and (ii), they will not be pursued here. See the conclusions for an illustration of this issue.

H ⊗H and gl(4, R): the algebra isomorphism between H ⊗H and gl(4, R), which is central
to this work is the following:

• Associate with each product tensor p ⊗ q ∈ H ⊗ H , the matrix, Mp⊗q , of the map
which sends x ∈ H to pxq̄, identifying R4 with H via the basis {1, i, j, k}. Thus, if
p = p0 + p1i + p2j + p3k; q = q0 + q1i + q2j + q3k, then

Mp⊗q =




u0 v0 w0 z0

u1 v1 w1 z1

u2 v2 w2 z2

u3 v3 w3 z3




with

pq̄ = u0 + u1i + u2j + u3k

piq̄ = v0 + v1i + v2j + v3k

pjq̄ = w0 + w1i + w2j + w3k

pkq̄ = z0 + z1i + z2j + z3k.

Here, q̄ = q0 − q1i − q2j − q3k.
• Extend this to the full tensor product by linearity, e.g., the matrix associated with

2(p1 ⊗ q1) − 9(p2 ⊗ q2) is the matrix 2Mp1⊗q1 − 9Mp2⊗q2 . This yields an algebra
isomorphism between H ⊗ H and gl(4, R). In particular, a basis for gl(4, R) is
provided by the 16 matrices Mex⊗ey

as ex, ey run through 1, i, j, k. In particular,
R4 = Mj⊗i , J4 = M1⊗j belong to this basis.

This connection, which is known from the theory of Clifford algebras, has been put to
great practical use in solving eigenvalue problems for structured matrices by Mackey et al,
[9–11]. It can also be used for finding exponentials, eA,A ∈ gl(4, R) via the following
procedure:

General algorithm for eA using H ⊗ H

(i) Identify u ∈ H ⊗ H , corresponding to A via this isomorphism.
(ii) Find eu ∈ H ⊗ H (in general, this will be possible in closed form only if u (and, hence

A) possesses additional structure).
(iii) Find the matrix M corresponding to eu—this is eA.

Note. Throughout this work, tacit use of H ⊗ H representations of matrices in gl(4, R) will
be made. These can be easily obtained from the entries of the 4 × 4 matrix in question (see
[9–11] for some instances). The key to this consists of the following two observations:
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• Conjugation in H ⊗ H corresponds to matrix transposition in gl(4, R), i.e., Mp̄⊗q̄ =
(Mp⊗q)

T . This is why, for instance, symmetric matrices correspond to c(1 ⊗ 1) + p ⊗ i +
q ⊗ j + r ⊗ k with p, q, r purely imaginary, and skew-symmetric matrices correspond to
s ⊗ 1 + 1 ⊗ t, s, t ∈ P .

• Hamiltonian (respectively skew-Hamiltonian) matrices are expressible as J2nS, with
S symmetric (respectively skew-symmetric). Similarly persymmetric (respectively
perskewsymmetric) matrices are expressible as RnS with S symmetric (respectively
skew-symmetric). Thus, for instance, perskewsymmetric matrices are represented by
(j ⊗ i)[s ⊗ 1 + 1⊗ t], s, t ∈ P . This simplifies to p ⊗ i +α(j ⊗ 1)+ j ⊗q +β(1⊗ i) with
p ∈ span{i, k}, q ∈ span{j, k}, α, β ∈ R. If such a matrix is simultaneously symmetric,
then α = β = 0, etc.

Combining these two observations with the explicit forms of the 16 matrices, Mex⊗ey
(see,

e.g., [9] for these explicit forms) leads to H ⊗ H representations, in terms of the entries of the
matrices.

3. Exponentials of structured 4 × 4 matrices

In this section, the algebra isomorphism between H ⊗ H and real 4 × 4 matrices will be
used to find exponentials of various structured matrices. For many of these matrices, their
exponentials can be found directly from their H ⊗H representations. These will be presented
first. For the remaining the singular value factorization of matrices, no bigger than 3 × 3, is
needed. This can be done in closed form [15]. These will be presented next.

3.1. Exponentials directly from H ⊗ H representation

Below a (by no means exhaustive) list of nine families of real 4 × 4 matrices, whose
exponentials can be directly found from their H ⊗ H representations, is presented. These
families seem to be ubiquitous in applications.

1. 4 × 4 skew-symmetric matrices. The corresponding element in H ⊗ H is p ⊗ 1 + 1 ⊗ q

with p, q ∈ P . For finding its exponential, it is noted that p ⊗ 1 and 1 ⊗ q commute, so
the exponential of the sum is the product of the individual exponentials. Now consider,
(p ⊗ 1)2 = −(‖p‖2)1 ⊗ 1. Thus, p ⊗ 1 is annihilated by a quadratic polynomial, and
its exponential, therefore, is

[
cos(‖p‖)1 + sin(‖p‖)

(‖p‖) p
] ⊗ 1 = x ⊗ 1, with x being a unit

quaternion. Likewise, e(1⊗q) = 1 ⊗ y, y being a unit quaternion. Thus, eA is the matrix
Mx⊗y , which is a different perspective on the SU(2) × SU(2), SO(4, R) relation.

2. 4 × 4 perskewsymmetric matrices. Such matrices P have H ⊗ H representations
p ⊗ i + α(j ⊗ 1) + j ⊗q + β(1 ⊗ i) = X + Y + Z + W with p ∈ span{i, k}, q ∈ span{j, k},
α, β ∈ R, we find X, Y both commute with each of Z and W . Hence eP = e(X+Y ) e(Z+W).
Further, XY = −YX,ZW = −WZ.

Next, since (X +Y )2 = (‖p‖2 +α2)1⊗1, e(X+Y ) = cosh(λ1)(1⊗1)+ sinh(λ1)

λ1
(X +Y ) =

cosh(λ1)(1 ⊗ 1) + sinh(λ1)

λ1
(p ⊗ i + α(j ⊗ 1)), with λ1 =

√
(‖p‖2 + α2). Likewise,

e(Z+W) = cosh(λ2)(1 ⊗ 1) + sin(λ2)

λ2
(Z + W) = cosh(λ2)(1 ⊗ 1) + sinh(λ2)

λ2
(j ⊗ q + β(1 ⊗ i)),

with λ2 =
√

(‖q‖2 + β2).
Hence, eP is the matrix representation of

{
cosh(λ1)(1⊗1)+ sinh(λ1)

λ1
[(p⊗i)+α(j ⊗1)]

}{
cosh(λ2)(1 ⊗ 1) + sinh(λ2)

λ2
[(j ⊗ q + β(1 ⊗ i)]

}
.

3. 4 × 4 skew-Hamiltonian matrices. Such matrices, S, have H ⊗ H representations of the
form b(1 ⊗ 1) + p ⊗ j + 1 ⊗ (ci + dk), with b, c, d ∈ R and p ∈ P . Clearly the b(1 ⊗ 1)
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component commutes with the remaining summands. Thus eS = eb exp(p ⊗ j + 1 ⊗
(ci + dk)). Now, (p ⊗ j + 1 ⊗ (ci + dk))2 = −(−‖p‖2 + c2 + d2)(1 ⊗ 1). Indeed the
two summands anti-commute, while (p ⊗ j)2 = ‖p‖2(1 ⊗ 1); (ci + dk)2 = −(c2 + d2)

(1 ⊗ 1). Hence eS = eb
(
cos(λ)(1 ⊗ 1) + sin(λ)

λ
(p ⊗ j + 1 ⊗ (ci + dk))

)
, with λ =√

(−‖p‖2 + c2 + d2). Note λ ∈ C.
4. Five Jordan algebras. See appendix B.
5. Eight Lie algebras. See appendix B. In particular, one member of this list is precisely

so(2, 2, R).
6. Simultaneously Hamiltonian, symmetric, persymmetric matrices. These have H ⊗ H

representations of the form M = X +Y +Z = β(j ⊗ i)+γ (i ⊗k)+ δ(k ⊗k), β, γ, δ ∈ R.
Now X commutes with both Y,Z while Y,Z anti-commute, and each of X, Y,Z squares
to a positive constant times 1 ⊗ 1. Hence eM is the matrix representation of

eX e(Y+Z) = [cosh(β)(1 ⊗ 1) + sinh(β)(j ⊗ i)]

×
[

cosh(λ)(1 ⊗ 1) +
sinh(λ)

λ
(γ (i ⊗ k) + δ(k ⊗ k)

]
, λ =

√
γ 2 + δ2.

7. Some symmetric Toeplitz matrices. The general case of a symmetric, Toeplitz matrix is
subsumed by the case of bisymmetric matrices, see remark 3.3. Here we identify two
important classes which do not require the intervening spectral factorization calculations
for the general case.

• Symmetric, Toeplitz, tridiagonal matrix. Since such a matrix is met frequently in
applications, it worth noting that its exponential can be directly computed in closed
form. Indeed, their H ⊗ H representations are given by a(1 ⊗ 1) + b

2 (j ⊗ i) +
b
2 (i ⊗ j) + b(k ⊗ j), a, b ∈ R. Expressing this as X + Y + Z + W , we see X
and Y commute with both Z,W and further XY = YX,ZW = −WZ. Hence
e(X+Y+Z+W) = eX eY e(Z+W) = ea

[
cosh

(
b
2

)
(1⊗1)+sinh

(
b
2

)
(j ⊗ i)

][
cosh(c)(1⊗1)+

sinh(c)

c
((i + k) ⊗ j)

]
, c =

√
5

4 b.
• Symmetric, Toeplitz matrix S satisfying s13 = 0. This implies that the second

superdiagonal and subdiagonal vanish. Such matrices have H ⊗ H representations
of the form a(1 ⊗ 1) + b(j ⊗ i) + c(i ⊗ j) + b(k ⊗ j). Now, the first and second
summand commute amongst themselves and with the remaining summands. While
the third and the fourth anti-commute. Hence,

eS = ea[cosh(b)(1 ⊗ 1) + sinh(b)(j ⊗ i)]

×
[

cosh(λ)(1 ⊗ 1) +
sinh(λ)

λ
(c(i ⊗ j) + b(k ⊗ j))

]
, λ =

√
b2 + c2.

8. Certain normal matrices. The general case of normal matrices is subsumed by the
algorithm below for a symmetric matrix, since the case of skew-symmetric matrices has
already been dealt with (a matrix is normal iff its symmetric and skew-symmetric parts
commute). Here we discuss a subclass which does not require the spectral factorization
calculations needed for exponentiating a symmetric matrix. This subclass is described
via the following:

Definition 3.1. Consider a normal N = S + T , with S being its symmetric part and T being its
skew-symmetric part. Expressing T as the sum of two commuting skew-symmetric matrices,
T1 = Ms⊗1 and T2 = M1⊗t , s, t ∈ P it is assumed that ‖s‖ �= ‖t‖. Such matrices will be
called special normal.
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Note that special normality forces T �= 0. Special normality also implies that [S, Ti] = 0, i =
1, 2 (this will be shown below). It is this condition that makes exponentiation in closed form
possible.

Indeed, consider, first the case that T1 �= 0. Letting S = a(1⊗1)+p⊗ i +q⊗j +r ⊗k, the
assumption [S, T1] = 0 forces, in conjunction with the linear independence of the elements
ex ⊗ey, ex, ey = i, j, k, each of the p⊗i, q⊗j, r ⊗k to commute with s⊗1. This implies that
each of p, q, r is parallel to s and hence the symmetric part of N can be expressed succinctly
as

a(1 ⊗ 1) + s ⊗ t̂ , s, t̂ ∈ P.

Now the condition, [S, T2] = 0 forces t to be parallel to t̂ . Hence we find

eN = ea

[
cosh(λ)I2 +

sinh(λ)

λ
(s ⊗ t̂ )

]
(es ⊗ 1)(1 ⊗ et ), λ = ‖s‖‖t̂‖.

If T1 = 0, then the condition [S, T2] = 0 implies that each of p, q, r is parallel to one another
(w.l.o.g p �= 0), and hence S = p ⊗ t̂ , with t̂ = kt, k ∈ R. Hence the above formula holds
with minor modification.

Next, it will be shown that special normality implies [S, Ti] = 0, i = 1, 2. One first
shows

T 4 + 2(‖s‖2 + ‖t‖2)T 2 + [(‖s‖2 − ‖t‖2)2]I = 0. (3.1)

The calculation leading to the above simultaneously shows (i) T’s minimal polynomial is
quadratic iff either of s or t vanishes (in this case, trivially [S, Ti] = 0, i = 1, 2; (ii) T’s
minimal polynomial is cubic iff ‖s‖ = ‖t‖. Hence, w.l.o.g T’s minimal polynomial is quartic,
i.e., T is non-derogatory.

Next, since S, T commute, they are simultaneously diagonalizable, via some unitary
matrix U. Consider U ∗T U = U ∗T1U + U ∗T2U . The last two matrices commute (since T1, T2

commute) and their sum is diagonal. If the entries of the diagonal matrix U ∗T U are all
distinct and non-zero, then the matrices U ∗T1U and U ∗T2U are themselves diagonal. Thus
they also commute with U ∗SU , which implies that S commutes with both the Ti . Note T being
non-derogatory implies the assumptions about the diagonal entries of U ∗T U , in view of the
nature of the eigenvalues of a 4 × 4 skew-symmetric matrix.

9. Certain non-Toeplitz bisymmetric matrices. Every persymmetric matrix is of the form
RS, with S being symmetric. Similarly, Hamiltonian matrices are of the form JS, with S
being symmetric. Such matrices can often be exponentiated in closed form, if in addition,
R4S = SR4 (respectively J4S = SJ4).

Indeed, since RS = SR, and R2 = I , we find eRS = cosh(S)+R sinh(S) (this equation
is valid in any dimension). Now, S = a(1⊗1)+p⊗ i +q ⊗j + r ⊗k satisfies R4S = SR4

iff (i) p is parallel to j and (ii) q, r are perpendicular to j . If, in addition we suppose
either q, r are parallel or q, r are perpendicular to one another, then exponentiation in
closed form is possible. For brevity the former possibility is assumed. Hence

S = a(1 ⊗ 1) + ε(j ⊗ i) + (αi + βk) ⊗ (γj + δk).

Note, in particular, that RS is symmetric, persymmetric, but not Toeplitz.
Writing RS as R(µI4 + S̃), with S̃ = X + Y , we see that it suffices to find eRS̃ . Now,

note that X and Y commute and X2 = ε2I, Y 2 = (α2 + β2)(γ 2 + δ2)I = λ2I .
Hence, cosh(S̃) = cosh(X) cosh(Y )+sinh(X) sinh(Y ), and sinh(S̃) = sinh(X) cosh(Y )+
sinh(Y ) cosh(X). But sinh(X) = sinh(ε)

ε
X; sinh(Y ) = sinh(λ)

λ
Y ; cosh(X) = cosh(ε)I ;



11620 V Ramakrishna and F Costa

cosh(Y ) = cosh(λ)I . Hence eRS is the matrix given by[
cosh(µ)I4 +

sinh(µ)

µ
R

][
cosh(ε) cosh(λ)I +

sinh(ε) sinh(λ)

λε
XY

]

+ R

[
sinh(ε) cosh(λ)

ε
X +

sinh(λ) cosh(ε)

λ
Y

]
.

Similarly, if JS = SJ , one finds (since J 2 = −I ) that

eJ2nS = cos(S) + J2n sin(S).

Now if S, symmetric, commutes with J , then fortunately (or unfortunately) J4S is also
simultaneously skew-symmetric, and therefore the previous formula is yet another way
of exponentiating J4S. Hence, the details are omitted.

3.2. The general symmetric case

Exponentiating the general 4 × 4 symmetric matrix requires the spectral factorization of a
3×3 matrix (which can be done in closed form). Before getting to that, the principal enabling
feature of the algorithm below is described by the following:

Proposition 3.1. The exponential of a(1 ⊗ 1) +
∑3

i=1 ui ⊗ vi, ui, vi ∈ P , with {ui, i =
1, . . . , 3}, {vi, i = 1, . . . , 3} each an orthogonal triple in R3 is given by ea	3

i=1 e(ui⊗vi ), with
e(ui⊗vi ) = cosh(‖ui‖‖vi‖)(1 ⊗ 1) + sinh(‖ui‖‖vi‖)

(‖ui‖‖vi‖) (ui ⊗ vi).

Proof. It suffices to observe that each of the summands in a(1 ⊗ 1) +
∑3

i=1 ui ⊗ vi commutes
with each other due to the orthogonality property. The formula for e(ui⊗vi ) is now just a
consequence of (ui ⊗ vi) squaring to a positive constant times the identity. �

Remark 3.1. If the triples {ui}, {vi} were instead each parallel to each other, then once again
the exponential of a(1 ⊗ 1) +

∑3
i=1 ui ⊗ vi is quickly computed, since now once again each

summand commutes with one another. There are other possible configurations which will
render the calculation of the exponential in closed form too. However, these will not be
pursued here for brevity.

Remark 3.2.

(i) Consider the element p ⊗ i + q ⊗ j + r ⊗ k, p, q, r ∈ P . Then, as observed in [9],
if

∑3
i=1 σiuiv

T
i , ui, vi ∈ R3 is the singular value factorization of the real 3 × 3 matrix,

[p | q | r], where the σi are the singular values and the ui, vi the left and right singular
vectors, it follows that p ⊗ i + q ⊗ j + r ⊗ k = ∑3

i=1 µiui ⊗ vi , where the vectors
ui, vi have been identified with the corresponding pure quaternions (in lieu of the elegant
proof in [9], one can also verify this via direct calculations which show that if for
pi, qi, ri, si ∈ P, i = 1, . . . , 3, the 3 × 3 matrices

∑3
i=1 piq

T
i ,

∑3
i=1 ris

T
i coincide, then∑3

i=1 Mpi⊗qi
= ∑3

i=1 Mri⊗si
). Since the {ui}, {vi} are each an orthonormal triple, the

exponential of p ⊗ i + q ⊗ j + r ⊗ k, which equals the exponential of
∑3

i=1 σiui ⊗ vi , can
be explicitly found by using proposition 3.1. The only issue is computing the singular
value factorization of a real 3 × 3 matrix. However, this is the spectral factorization of a
real 3×3 symmetric matrix, which itself can be done in closed form [15]. It is interesting
to note that the technique described in [15], consisting of 3 × 3 matrix manipulations, can
itself be implemented via quaternions.
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(ii) Note the subsequent rotations employed in [9] to diagonalize a symmetric matrix are not
required, since diagonalization is not being employed here to compute exponentials. Only
the reduction to form used in proposition 3.1 is needed.

This leads to the following algorithm for the exponential of a 4 × 4 symmetric matrix:

• Represent the matrix as a(1 ⊗ 1) + p ⊗ i + q ⊗ j + r ⊗ k, p, q, r ∈ P .
• Compute the singular value factorization,

∑3
i=1 σiuiv

T
i , ui, vi ∈ R3 of the real 3 × 3

matrix, [p | q |r].
• Compute the exponential of a(1 ⊗ 1) +

∑3
i=1 σiui ⊗ vi via proposition 3.1. The 4 × 4

matrix representing this element of H ⊗ H is eA.

Remark 3.3. The special classes of 4 × 4 bisymmetric matrices (i.e., simultaneously
symmetric and persymmetric) and 4 × 4 symmetric and Hamiltonian matrices are, of
course, subsumed by the foregoing algorithm. However, it is worth pointing out, in view
of their importance in applications, that the singular value factorization needed is easier
to find than in the fully symmetric case. Indeed, a bisymmetric matrix is represented by
a(1 ⊗ 1) + b(j ⊗ i) + p ⊗ j + q ⊗ k, p, q ∈ span{i, k}, a, b ∈ R. Thus, it suffices to find
the singular value factorization of the 2 × 2 matrix [p | q], which is the spectral factorization
of a 2 × 2 real symmetric matrix. Likewise, a symmetric, Hamiltonian matrix is represented
by q ⊗ i + r ⊗ k. Thus, it suffices to find the singular value factorization of the 3 × 2
matrix [p | q]. As will be seen in the example in this section, only two of the left singular
vectors are needed, and hence once again, only a 2 × 2 matrix calculation is all that is needed.
There are many other cases of symmetric matrices possessing additional symmetry which are
susceptible to the same observation.

Remark 3.4. Extension to complex matrices. Some of the procedures extend to special
classes of complex matrices. This is illustrated for matrices in so(4, C). Such a matrix can
be represented in the form α1Mi⊗1 + β1Mj⊗1 + γ1Mk⊗1 + α2M1⊗i + β2M1⊗j + γ2M1⊗k =∑

l=1 Xl , with αi, βi, γi ∈ C. Now the fact that these constants are complex does not prevent
XiXj = XjXi, i = 1, . . . , 3; j = 4, . . . , 6. Neither does it prevent XkXl + XlXk = 0, l, k =
1, . . . , 3, nor does it prevent XkXl + XlXk = 0, l, k = 4, . . . , 6. Finally, X2

i = −c2
i I4 for each

i = 1, . . . , 6, for some ci ∈ C. Hence the exponential is given by[
cos(λ1)I4 +

sin(λ1)

λ1
(α1Mi⊗1 + β1Mj⊗1 + γ1Mk⊗1)

]

×
[

cos(λ2)I4 +
sin(λ2)

λ2
(α2M1⊗i + β2M1⊗j + γ2M1⊗k)

]

with λ2
i = −(

α2
i + β2

i + γ 2
i

)
, i = 1, 2. Similarly the technique for p(4, R) extends verbatim

to p(4, C). However, while the methods based on the singular value factorization extend
verbatim for purely imaginary symmetric matrices, they are not applicable to general complex
symmetric matrices. To see what is needed for the extension, consider traceless symmetric
matrices (w.l.o.g). Let AR and AI be the real and imaginary parts of A. Since these are also
symmetric, one can associate two triples (pi, qi, ri) ∈ P 3, i = 1, 2. Let Mi = [pi | qi | ri]
be the corresponding real 3 × 3 matrices. If these could be simultaneously brought into
the canonical forms Mi = ∑3

k=1 σ i
kukv

T
k , with the uk and vk orthonormal, σ i

k ∈ R, then
clearly the algorithm for real symmetric matrices would extend verbatim to such matrices.
Many sufficient conditions are known for such simultaneous canonical form [16]. One such
condition is that both M1M

T
2 ,MT

2 M1 should be symmetric.
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3.3. Illustrative example

In this section we illustrate the above results for finding eH , when H is a 4 × 4 Hamiltonian
and symmetric matrix. A concrete situation where this problem arises is that of parametrizing
all squeezing transformations for two mode quantum states. The authors of [6] have argued
that the most general such operation is given by the unitary metaplectic representation of a
symplectic matrix which is also positive definite. A matrix is symplectic if XT J2nX = J2n.
Such matrices form the Lie group corresponding to the Lie algebra of Hamiltonian matrices.

Now any symplectic matrix may be factorized as X = PO, where P is positive definite
and O is orthogonal—this is just the polar decomposition of X. It is known that both P and O
are also simultaneously symplectic [6].

Denoting by UX the operator given by the metaplectic representation of a symplectic X, it
is shown in [6] that operators of the form UO conserve the total photon number, while those of
the form UP do not. Thus, parametrizing all squeezing operations requires, as a preliminary
step, parametrizing all symplectic positive definite matrices. The second step of finding the
metaplectic representation is standard (it consists of a sequence of Fourier transforms) and it
is not the purpose of this work.

Remark 3.5. It is customary to write the operators, UX, in the form exp(iL), where L is an
operator which is (typically) quadratic in the creation and annihilation operators. However,
as it stands, this is just a formal expression. Since the collection of such operators forms
a Lie algebra, isomorphic to sp(2n,R), the proper interpretation of this expression is that
exp(iL) = US , with S = eH , where H ∈ sp(2n,R) maps to L under this isomorphism.
However, this suggestive notation is an expression of the fact that the collection of metaplectic
representations of all symplectic matrices forms a group—the metaplectic group—which is a
two-one cover of the symplectic group, just as SU(2) is a two-one cover of SO(3, R). However,
unlike SU(2), the metaplectic group is not a group of matrices.

Now every positive definite, symplectic matrix is the exponential of a symmetric matrix,
which is simultaneously Hamiltonian. Thus, for two mode systems, this preliminary step can
be achieved by exponentiating all symmetric, Hamiltonian 4 × 4 matrices.

Thus, let H be a 4 × 4 symmetric, Hamiltonian matrix. Then H = J4S, where S is
symmetric. Since H is also simultaneously symmetric, we find (by setting equal to zero the
skew-symmetric part of H) that H = Mq⊗i+r⊗k , with q, r ∈ P . The explicit formulae for q, r

in terms of the entries of H are easily found [10]. They are recorded here for completeness.

q = q1i + q2j + q3k = h11 + h22

2
i + h14j +

h24 − h13

2
k

r = r1i + r2j + r3k = h13 + h24

2
i − h12j +

h11 − h22

2
k.

The procedure for finding the exponential of H now is the following:

• Form the 3 × 2 matrix Y,

Y =

q1 r1

q2 r2

q3 r3


 .

• Find the singular values σ1, σ2 and the right singular vectors v1, v2 of Y. The former are
the positive square roots of the eigenvalues of the 2×2 symmetric, positive definite matrix



On the exponentials of some structured matrices 11623

Y T Y = (
qT q qT r

rT q rT r

)
, and the latter are orthonormal eigenvectors v1, v2 of Y T Y belonging to

these two eigenvalues of YT Y . Explicitly,

σ1 =
√

qT q cos2 θ + rT r sin2 θ − qT r sin(2θ)

σ2 =
√

qT q sin2 θ + rT r cos2 θ + qT r sin(2θ)

v1 = (cos θ,−sin θ)T v2 = (sin θ, cos θ)T

with tan(2θ) = 2qT r

rT r−qT q
. Denote by vi also, the corresponding pure quaternions whose

j -component is zero, i.e.,

v1 = cos θi − sin θk v2 = sin θi + cos θk.

• Find ui = Yvi, i = 1, 2. Thus,

u1 = (q1 cos θ − r1 sin θ, q2 cos θ − r2 sin θ, q2 cos θ − r2 sin θ)T

u2 = (q1 sin θ + r1 cos θ, q2 sin θ + r2 cos θ, q3 sin θ + r3 cos θ)T .

The ui are almost the left singular vectors of Y. The only difference is that ‖ui‖ = σi ,
instead of being 1. For the purpose at hand this difference is insignificant. The third left
singular vector, corresponding to the 0 eigenvalue of YYT , is not required. The usual
singular value decomposition of Y now reads Y = ∑2

i=1 uiv
T
i . Denote by ui also, the

corresponding pure quaternions. Then H = ∑2
i=1 Mui⊗vi

.
• Find the elements, wi ∈ H ⊗ H, i = 1, 2 given by wi = cosh(σi)1 ⊗ 1 + sinh(σi )

σi
ui ⊗ vi .

• Let Mi, i = 1, 2 be cosh(σi)I4 + sinh(σi )

σi
Mui⊗vi

.

• Then eH = M1M2.

Thus, eH is parametrized by the six parameters ql, rl, l = 1, . . . , 3, with the entries of eH

being some computable quantities of these six parameters. Note, since here the exponential is
being used only for parametrization, one can begin directly with the pl, rl, l = 1, . . . , 3, i.e.,
one need not write the pl, rl in terms of the hij .

4. Conclusions

In this paper, closed form formulae are provided for exponentials of several important families
of real (and complex) 4×4 matrices. In conjunction, with techniques such as Givens rotations,
these formulae provide algorithms for exponentiating classes of structured matrices in higher
dimensions. The principal technique is the invocation of the associative algebra isomorphism
between gl(4, R) and H ⊗ H . It is the ease of multiplication in H ⊗ H which facilitates the
discovery of closed form exponentials for many matrices.

It is possible to write exponentials of matrices once their minimal polynomial is known
(especially if they are at most quartic). However, these formulae themselves can be
quite complicated and hence they were not pursued in this paper. This is exemplified
by generic 4 × 4 skew-symmetric matrices, whose minimal polynomial is quartic. The
corresponding exponential formula, though equivalent to the one given here, is substantially
more complicated. In our opinion most 4 × 4 matrix calculations should be done in
H ⊗ H . The formulae for the minimal polynomial of a 4 × 4 skew-symmetric matrix (see
equation (3.1)), without any spectral information, are yet another vivid illustration.

Clearly, H̃ ⊗ H̃ is associative algebra isomorphic to gl(4, c), where H̃ is the
complexification of H. One can identify the latter with gl(2, C). However, it is better to
view its elements as q = x0 + x1i + x2j + x3k, xi ∈ C and define q̄ = x̄0 − x̄1i − x̄2j − x̄3k.
This notion of conjugation is equivalent to Hermitian conjugation in gl(4, C). This does not,
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however, render calculating exponentials in su(4) as simple as in so(4, R) (after all one cannot
run away from the curse of dimensionality by such an artifice). However, several Hermitian
and skew-Hermitian matrices (e.g., whose real and imaginary parts come from special normal
real matrices) are easily exponentiated.

Appendix A

In this appendix, a different approach to the exponentiation of matrices in p(4, R),

so(2, 2, R), p(3, R) is described, which reduces the problem to the exponentiation of 2 × 2
matrices (this is equally applicable to their complex counterparts). This is first illustrated
for matrices in so(3, R) and so(4, R) since this should be reasonably well-known terrain.
Attention, in particular, is drawn to remark 5.1, which provides the correct heuristics needed
to generalize this to the matrices in p(4, R), so(2, 2, R), p(3, R).

Notation. Throughout this appendix, σx, σy, σz represent the usual Pauli matrices. Emn

represents the square matrix whose sole non-zero entry is a 1 in the (m, n) entry.

Consider an element A ∈ so(3, R). Its exponential can be computed explicitly via the
Rodrigues formula. The usual derivation of this relies on the fact that A satisfies

A3 + λ2A = 0, λ ∈ R.

Any matrix which satisfies this equation will satisfy the Rodrigues formula. There is a
equally well-known relation between su(2) and so(3, R). What is, perhaps, less appreciated
is that this relation yields an explicit technique to find eA,A ∈ so(3, R). To describe this,
fix a G ∈ SU(2). Consider V = {A | A∗ = A, Tr(A) = 0}. SU(2) acts via conjugation on
elements A ∈ V , namely, φG(A) = GAG−1. It is well known that upon identifying V with
R3 through the basis {σk, k = x, y, z}, this action yields a proper rotation of R3. Thus, we get
a homomorphism, φ : SU(2) → SO(3, R), which sends G to the matrix of φG with respect
to the basis {σk, k = x, y, z}. This is a surjective, two-one, homomorphism. Linearizing this
map, we get a Lie-algebra isomorphism ψ : su(2) → so(3, R), namely, ψ(A) is the matrix
of the linear map which sends v ∈ V to Av − vA with respect to the {σk, k = x, y, z} basis,
with A ∈ su(2). This is a Lie-algebra isomorphism. From elementary considerations in Lie
theory ψ and φ provide the following technique to find eA,A ∈ so(3, R):

(i) Find B = ψ−1(A) in su(2)

(ii) Compute eB ∈ SU(2)—this can be explicitly done since B satisfies the condition in (i) of
remark 2.1.

(iii) Compute the matrix φ(eB)—this is eA.

This is arguably easier to use than the Rodrigues formula (it is left to the reader to verify
that the two result in the same formula). This is not to disparage the Rodrigues formula—it
applies to situations where Lie theory would have no visible role. But the fact that a 3 × 3
exponential has been computed with a 2 × 2 calculation is significant. Similar and even better
savings occur by such arguments.

Exponentials in so(4, R). There is a well known two-one Lie group homomorphism denoted by
φ : SU(2)×SU(2) → SO(4, R), given by the action of SU(2)×SU(2) on the vector space, V ,
of real linear combinations of I2, iσk, k = x, y, z, namely, for fixed G,H ∈ SU(2) × SU(2),
let φG,HV → V be given by φG,H (X) = GXH−1, X ∈ V . Once again this is a proper
rotation of R4 (identified with V via this basis), and φ(G,H) is precisely the matrix of
this map with respect to this basis. Linearizing this gives a Lie algebra isomorphism,
ψ : su(2) × su(2) → so(4, R) which sends (X, Y ) ∈ su(2) × su(2) to the matrix of
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the map (with respect to the I2, iσk basis) which sends Z ∈ V to XZ − YZ. This yields
an algorithm to find eA,A ∈ so(4, R), which reduces to finding two 2 × 2 exponentials in
su(2)—the statement of the algorithm is omitted (mimick the p(4, R) algorithm given below).

The corresponding relations between SL(2, C) (respectively SL(2, C) × SL(2, C)) and
SO(3, C) (respectively SO(4, C)) once again reduce exponentiation of matrices in so(3, C)

and so(4, C) to 2 × 2 calculations. Note that the fact that SO(3, C) etc, are not compact
does not matter for the veracity of this procedure. All that is needed for finding eA is that
the corresponding φ be a Lie group homomorphism (it need not even be surjective) and the
corresponding ψ be a Lie algebra isomorphism.

Remark 5.1. Traditional proofs of the SU(2) covering of SO(3, R) proceed by (i)
using su(2) itself as the vector space V , and (ii) then, by constructing a bilinear form,
K(X, Y ) = Tr(ad X ad Y ) on su(2) and showing that this is preserved by the action of SU(2).
For our purposes it is more useful to proceed differently. On any (sub)space of 2 × 2 matrices,
there are two obvious candidates for quadratic forms, namely, (i) Tr(X2); and (ii) det(X). One
is even led inexorably to these forms upon inspecting the forms of the maps φ used above for
both so(3, R) and so(4, R). Polarizing these two leads to the following choices:

L1(X, Y ) = Tr(XY ) (A1)

L2(X, Y ) = det(X + Y ) − det(X) − det(Y ). (A2)

It is easy to see that, with the choice of bases made in the derivation of the so(3, R)

(respectively so(4, R)) algorithms, the symmetric matrices representing these two forms are,
up to a real constant, precisely I3 (respectively I4). This immediately shows that the matrix of
the corresponding φ is orthogonal.

Remark 5.2. Lorenz Lie algebra. Here a different perspective on the work of [14] on the
exponentials of matrices in so(1, 3, R) is provided. Indeed, letting V be the R-linear span of
{I2, σx, σy, σz} (i.e., V is the space of 2 × 2 Hermitian matrices), it is found that the matrix of
L2(X, Y ) is 2I1,3. If SL(2, C) acts on V via φM(v) = MvM∗, v ∈ V,M ∈ SL(2, C), then
L2(X, Y ) is preserved and the matrix of φM in this basis is in the Lorenz group. Linearizing
φ, we get a technique to find exponentials in so(1, 3, R), cf [14].

Below the same thinking is used to compute exponentials in p(4, R), so(2, 2, R) and
p(3, R). The method can be applied to several other Lie algebras stemming from symmetric,
non-degenerate, bilinear forms on R4. However, we limit ourselves to these cases for brevity.

Exponentials in p(4, R). Consider gl(2, R), identified with R4 via the basis, {E11, E12,

−E21, E22}. Let SL(2, R) × SL(2, R) act on gl(2, R), via φG,H (X) = GXH−1. This
action leaves the bilinear form L2(X, Y ) of equation (A2) invariant. Furthermore the
symmetric matrix representing it, with respect to this basis, is R4. Thus the matrix of
φG,H is in P(4, R). Linearizing this we get a Lie-algebra isomorphism (that this is a
Lie-algebra homomorphism is standard—it is easily verified that it is an isomorphism):
ψ : sl(2, R) × sl(2, R) → p(4, R), which sends a pair (g, h) ∈ sl(2, R) × sl(2, R)

to the matrix of the linear map Lg,h(X) = gX − Xh,X ∈ gl(2, R) with respect to the
{E11, E12,−E21, E22} basis. This leads to the following algorithm to find eA,A ∈ p(4, R).
Algorithm for eA,A ∈ p(4, R):

(i) Find the pair (g, h) = ψ−1(A) ∈ sl(2, R) × sl(2, R);
(ii) Find G = eg,H = eh. This is easily done since g, h satisfy the equation in

remark 2.1 (i);
(iii) Find the matrix of φG,H with respect to the above basis. This is eA.
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Exponentials in so(2, 2, R). Now identify gl(2, R) with R4 via the basis {I2, E12 −
E21, σx, σz}. Then the matrix of L2(X, Y ), with respect to this basis is precisely I2,2. Let
SL(2, R) × SL(2, R) act on gl(2, R) via φG,H (V ) = GV H−1,G,H ∈ SL(2, R), V ∈
gl(2, R). Then φG,H preserves L2(X, Y ) and hence its matrix, with respect to this
basis, is in SO(2, 2, R). Linearizing this action we get a Lie algebra isomorphism
ψ : sl(2, R) × sl(2, R) → so(2, 2, R), with ψ(g, h) being the matrix of the linear map
ψg,h(v) = gv − vh, v ∈ gl(2, R) with respect to the same basis. This leads to an algorithm,
similar to the previous one, for finding eA,A ∈ so(2, 2, R).

Exponentials in p(3, R). Now identify R3 with the real span of E12, σx, E21. This is sl(2, R).
Then the matrix of L1(X, Y ), with respect to this basis, is, up to a constant, R3. Let SL(2, R)

act on this copy of R3 via φG(h) = GhG−1. This action preserves L1(X, Y ). Thus, the matrix
of φG is in P(3, R) and the map φ : SL(2, R) → P(3, R) is easily seen to be a Lie group
homomorphism. Linearizing φ leads to a Lie algebra isomorphism ψ : sl(2, R) → p(3, R)

which sends h ∈ sl(2, R) to the matrix of the linear map, which sends X ∈ sl(2, R) to
hX − Xh (identifying sl(2, R) with R3 via the above basis). This leads to an algorithm for
finding eA,A ∈ p(3, R).

Remark 5.3. (i) The last calculation can be mimicked to find exponentials in so(2, 1, R).
Indeed, identify sl(2, R) with R3 via the basis {σx, σz, E12 − E21} and proceed verbatim as in
the p(3, R) case. (ii) All of the above calculations extend to find exponentials in p(4, C) etc.
The only difference is one works with complexifications of the various Lie algebras introduced
before, i.e., sl(2, C) × sl(2, C) for p(4, C) etc.

Appendix B

In this appendix are listed (i) five classes of matrices, each a Jordan algebra, which can be
exponentiated by mimicking the technique for skew-Hamiltonian matrices; (ii) eight classes
of matrices, each forming a Lie algebra, which can be exponentiated by mimicking the
technique for perskewsymmetric matrices. In most cases the technique extends to their
complex analogues (e.g., so(2, 2, C)), cf remark 3.4. In both lists, the H ⊗ H representation
is provided. The interesting block structures of these matrices, which are easy to write, are
omitted.

Remark 6.1. Let M1,M2 be two invertible, symmetric (respectively skew-symmetric)
matrices, with the corresponding bilinear form on Rn denoted by 〈 , 〉M1 , 〈 , 〉M2 . The two forms
are defined to be equivalent if there is a special orthogonal matrix G such that GT M1G = M2.
If this is the case then the corresponding Jordan algebras, Ji = {X | XT Mi = MiX}, i = 1, 2
and the corresponding Lie algebras Li = {X | XT Mi = −MiX}, i = 1, 2 are conjugate.
Specifically J2 = GT J1G,L2 = GT L1G. Thus, if one knows exponentials of matrices in J1

(respectively L1), then one can find exponentials of matrices in J2 (respectively L2) provided
G is explicitly described.

In the first list, the first two Jordan algebras pertain to bilinear forms which are equivalent
to J4, while all the matrices in the second list stem from symmetric forms equivalent to R4.
While it is possible to explicitly construct the corresponding G, it is far easier to work with
the matrices in these lists directly.

Exponentials of five Jordan algebras

• p ⊗ k + a(1 ⊗ 1) + 1 ⊗ (bi + cj), a, b, c ∈ R,p ∈ P .
• p ⊗ i + a(1 ⊗ 1) + 1 ⊗ (bj + ck), a, b, c ∈ R,p ∈ P .
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• i ⊗ q + a(1 ⊗ 1) + (bj + ck) ⊗ 1, a, b, c ∈ R, q ∈ P .
• j ⊗ q + a(1 ⊗ 1) + (bi + ck) ⊗ 1, a, b, c ∈ R, q ∈ P .
• k ⊗ q + a(1 ⊗ 1) + (bi + cj) ⊗ 1, a, b, c ∈ R, q ∈ P .

Exponentials of eight Lie algebras

• so(2, 2, R). The H ⊗ H representation is a(1 ⊗ i) + i ⊗ p + b(i ⊗ 1) + q ⊗ i, p, q ∈
span{j, k}, a, b ∈ R. The block representation is

(
A B

BT C

)
, where B is any 2 × 2 matrix,

while A,C are 2 × 2 anti-diagonal matrices with zero anti-trace.
• p ⊗ j + a(j ⊗ 1) + j ⊗ q + b(1 ⊗ j), p, q ∈ span{i, k}, a, b ∈ R.
• p ⊗ k + a(k ⊗ 1) + k ⊗ q + b(1 ⊗ k), p, q ∈ span{i, j}, a, b ∈ R.
• p ⊗ i + a(k ⊗ 1) + k ⊗ q + b(1 ⊗ i), p ∈ span{i, j}, q ∈ span{j, k}, a, b ∈ R.
• p ⊗ j + a(k ⊗ 1) + k ⊗ q + b(1 ⊗ j), p ∈ span{i, j}, q ∈ span{i, k}, a, b ∈ R.
• p ⊗ j + b(i ⊗ 1) + a(1 ⊗ j) + i ⊗ q, p ∈ span{j, k}, q ∈ span{i, k}, a, b ∈ R.
• p ⊗ k + a(i ⊗ 1) + b(1 ⊗ k) + i ⊗ q, p ∈ span{j, k}, q ∈ span{i, j}, a, b ∈ R.
• p ⊗ k + a(j ⊗ 1) + b(1 ⊗ k) + j ⊗ q, p ∈ span{i, k}, q ∈ span{i, j}, a, b ∈ R.
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